
Package: fossilbrush (via r-universe)
August 21, 2024

Title Automated Cleaning of Fossil Occurrence Data

Version 1.0.4

Description Functions to automate the detection and resolution of
taxonomic and stratigraphic errors in fossil occurrence
datasets. Functions were developed using data from the
Paleobiology Database.

License GPL (>= 3)

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Depends R (>= 2.10)

Imports igraph, curl, data.table, pbapply, stringdist, stringr,
Matrix, methods

Suggests rmarkdown, knitr

VignetteBuilder knitr

URL https://cran.r-project.org/package=fossilbrush

BugReports https://cran.r-project.org/package=fossilbrush

Repository https://jf15558.r-universe.dev

RemoteUrl https://github.com/jf15558/fossilbrush

RemoteRef HEAD

RemoteSha 3a6ffcd1be9a96c4217c5f08a0af7a94ca805769

Contents
add_itp . 2
add_kingdoms . 3
age_ranges . 4
assess_duplicates . 5

1

https://cran.r-project.org/package=fossilbrush
https://cran.r-project.org/package=fossilbrush

2 add_itp

brachios . 6
check_taxonomy . 7
chrono_scale . 10
clean_name . 11
densify . 12
discrete_ranks . 14
find_duplicates . 15
find_peaks . 15
flag_ranges . 16
format_check . 18
geog_lookup . 19
get_pbdb . 19
GTS_2020 . 21
GTS_2020_changelog . 22
intersect_ranges . 22
pacmacro_ranges . 23
pbdb_fields . 24
pbdb_kingdoms . 25
plot_dprofile . 25
plot_taxa . 26
quantile_coef_density_BMS . 27
resolve_duplicates . 28
revise_ranges . 29
sepkoski . 31
sep_code . 31
spell_check . 32
tgraph . 33
threshold_peaks . 34
threshold_ranges . 35
update_graph . 36

Index 38

add_itp add_itp

Description

Function to add detected peaks using the output of

Usage

add_itp(x, taxon, legend.pos = "topright", exit = TRUE)

add_kingdoms 3

Arguments

x The list output of @seealso threshold_ranges

taxon A character vector of length one, specifying one of the taxon names in x to be
plotted

legend.pos One of topleft, bottomleft, topright or bottomright, or a vector of length two,
giving the xy coordinates of the legend. A convenience parameter so that the
plot detail can remain unobscured.

exit Restore base plotting parameters on function exit (default as a requirement for
CRAN). Can be set to false to allow other elements to be aded to a plot

Value

None, the detected peaks are added to an existing density plot

See Also

threshold_ranges. This function should be used to add information to an existing plot from @seealso
densify, ensuring that the same taxon name is being used

Examples

load dataset#
data("brachios")
subsample brachios to make for a short example runtime
set.seed(1)
brachios <- brachios[sample(1:nrow(brachios), 1000),]
densify ranges
dens <- densify(brachios)
interpeak thresholding
itp <- threshold_ranges(brachios, win = 8, thresh = 10,

rank = "genus", srt = "max_ma", end = "min_ma")
append the stratigraphically thresholded taxon names to the dataset
plot the taxon, now identifying the peaks
plot_dprofile(dens, "Atrypa", exit = FALSE)
add_itp(itp, "Atrypa")

add_kingdoms add_kingdoms

Description

Convenience function to add in a kingdom column to a PBDB dataset. This relies on the dataset
having a column of phylum-level assignments for occurrences. The kingdom column is a useful
addition for filtering very large taxonomically diverse datasets, and adds in an additional level of
data which can inform taxonomic cleaning routines like those called by @seealso check_taxonomy

4 age_ranges

Usage

add_kingdoms(x, phylum = "phylum", insert.left = TRUE)

Arguments

x A dataframe containing, minimally, phylum-level assignments of the data

phylum A character of length 1 specifing the column in x with the phylum level assign-
ments

insert.left A convenience argument which will make sure that the kingdom column will be
inserted in dataframe left immediately to the left of the phylum column

Value

The dataframe x, with the kingdom column inserted

Examples

load dataset
data("brachios")
add kingdoms to dataset
brachios <- add_kingdoms(brachios)

age_ranges roxygen documentation

Description

age_ranges

Usage

age_ranges(
data,
taxonomy = "genus",
srt = "max_ma",
end = "min_ma",
mode = "max"

)

Arguments

data A three column dataframe comprising one or more character columns of taxo-
nomic names, a numeric column of FADs and a numeric column of LADs

taxonomy A character vector corresponding to one or more of the taxonomic name columns
in data

srt A character vector of length one specifying the FAD column in data

assess_duplicates 5

end A character vector of length one specifying the LAD column in data

mode A character vector of length one specifying the type of range table to return: one
of max, min or bounds. If not specified by the user, the function behaviour will
default to max

Details

Function to derive a range table of taxon names from a stratigraphic occurrence dataset. The default
behaviour is to return a total range table - the oldest FAD and youngest LAD for each taxon (max),
but the function can also return the minimum range - youngest FAD and oldest LAD (min), or
the uncertainty bounds on each FAD and LAD - the two oldest FADs and two youngest LADs
(bounds). The names for which ranges are derived are specified by the taxononmy argument, but
multiple elements can be given here, allowing taxonomic range for higher clades to also be returned.

Value

A dataframe containing at least four columns: taxon name, FAD, LAD and the taxonomic rank. If
taxonomy is of length one, taxonomic rank will be a vector of identical names. If mode = "bounds",
there will be two pairs of age columns, denoting the upper and lower bounds on the FAD and LAD
for each taxon name

Examples

load dataset
data("brachios")
derive age ranges
rng <- age_ranges(brachios)

assess_duplicates assess_duplicates

Description

Function to assess and resolve elements with multiple higher classifications in a tgraph object.
Assessment is performed based on the topology of the graph they form. Linear paths (i.e. two
totally separate paths diverging from the a shared node), rings (divergent paths which only reunite
at the highest rank in the tgraph) or more than two divergent paths are treated as distinct. If not any
of these cases, the distance between the focal element and the reunion of the divergent paths, along
with their subtopologies are assessed and a consensus or preferred path based on the frequency of
each path in the tgraph or their completeness returned, or the element judged as having multiple
distinct classifications

Usage

assess_duplicates(
x,
node,
mode = c("frequency", "completeness"),

6 brachios

jump = 3,
plot = FALSE

)

Arguments

x A tgraph object

node character vector of elements with multiple higher classifications in x, or a tvert-
seq object with those same elements as focal

mode The rule to be used in selecting between multiple higher classifications. It is
possible for the most complete pathway to also be the most frequent

jump The maximum number of levels between the point of divergence and the point
of reunion (if present) for a given path, below which the divergence will be taken
as conflicting

plot A logical speciying if the divergent paths should be plotted

Value

A list with as many items as elements with multiple classifications, each recording the assessment
for a given element

brachios brachios

Description

An example dataset of Palaeozoic brachiopods downloaded from the Paleobiology Database.

Usage

brachios

Format

An object of class data.frame with 151473 rows and 10 columns.

check_taxonomy 7

check_taxonomy check_taxonomy

Description

Wrapper functions to implement a multi-step cleaning routine for hierarchically structured taxo-
nomic data. The first part of the routine calls @seealso format_check to perform a few presumptive
checks on all columns, scanning for non-letter characters and checking the number of words in
each string. By default, @seealso clean_name is called to ensure correct formatting as this im-
proves downstream checking. The second part of the routine calls @seealso spell_check to flag
spelling discrepancies between names within a given taxonomic group. If chosen, the function can
automatically impose the more frequent spelling. The third part of the routine calls @seealso dis-
crete_ranks to flag name re-use at different taxonomic levels. Some of these cases may arise when a
name has been unfortunately, (although permissibly) used to refer to groups at different taxonomic
levels, or where a higher classification may have been inserted as a placeholder for a missing lower
classification. The fourth part of the routine calls @seealso find_duplicates to flag variable higher
classifications for a given taxon, including cases where a higher classification is missing for one
instance of a taxon, but present for the others. If chosen, @seealso resolve_duplicates is called to
ensure a consistent classification is imposed. For cases where a name has been re-used at the same
rank for genuinely different taxa (not permissible, unlike name re-use at different ranks) suffixes
are added as capital letters, e.g. TaxonA, TaxonB. If any of the automatic cleaning routines are
employed (again the default behaviour as clean_name is TRUE by default), the function will return
are a cleaned version of the dataset. If the use of suffixes from @seealso resolve_duplicates is not
desirable, the function behaviour can be altered so that any suffixes are dropped before returning.

Usage

check_taxonomy(
x,
ranks = c("phylum", "class", "order", "family", "genus"),
species = FALSE,
species_sep = NULL,
routine = c("format_check", "spell_check", "discrete_ranks", "find_duplicates"),
report = TRUE,
verbose = TRUE,
clean_name = FALSE,
clean_spell = FALSE,
thresh = NULL,
resolve_duplicates = FALSE,
append = TRUE,
term_set = NULL,
collapse_set = NULL,
jw = 0.1,
str = 1,
str2 = NULL,
alternative = "jaccard",
q = 1,

8 check_taxonomy

pref_set = NULL,
suff_set = NULL,
exclude_set = NULL,
jump = 3,
plot = FALSE

)

Arguments

x A dataframe with hierarchically organised taxonomic information. If x only
comprises the taxonomic information, @param ranks does not need to be spec-
ified, but the columns must be in order of decreasing taxonomic rank

ranks The column names of the taxonomic data fields in x. These must be provided in
order of decreasing taxonomic rank

species A logical indicating if x contains a species column. As the data must be supplied
in hierarchical order, this column will naturally be the last column in x and
species-specific spell checks will be performed on this column. NOTE that for
the function to work, the species name must be the full species name rather than
just the specific epithet, e.g., ’Tyto_alba’ rather than just ’alba’.

species_sep A character vector of length one specifying the genus name and specific epithet
in the species column

• Flagging routine arguments *

routine A character vector determining the flagging and cleaning routines to employ.
Valid values are format_check (check for non letter characters and the number
of words in names), spell_check (flag potential spelling errors), discrete_rank
(check that taxonomic names are unique to their rank), duplicate_tax (flag con-
flicting higher classifications of a given taxon)

report A logical of length one determining if the flagging outputs of each cleaning
routine should be returned to the user for inspection. This is different to @param
verbose, which controls whether flagging should additionally be reported to the
user on the console

verbose A logical determining if function progress and flagged errors should be reported
to the console

• Cleaning routine arguments *

clean_name If TRUE, the function will return cleaned versions of the columns in x using
the routines in @seealso clean_name. These routines can be altered using the
’term_set’ and ’collapse_set’ arguments.

clean_spell If TRUE, the function will return a cleaned version of the supplied taxonomic
dataframe, using the supplied threshold for the similarity method given by method2,
to automatically update any names in pairs of flagged synonyms to the more fre-
quent spelling. This is not recommended, however, so the argument is FALSE
by default and the threshold left as NULL

thresh The threshold for the similarity method given by method2, below which flagged
pairs of names will be considered synonyms and resolved automatically. See
@seealso spell_check for details on method2

check_taxonomy 9

resolve_duplicates

If TRUE, the function will return a cleaned version of the supplied taxonomic
dataframe, using @seealso resolve_duplicates to resolve conflicts in the way
documented by the function. Both spell_clean and tax_clean can both be TRUE
to return a dataset cleaned by both methods

append If TRUE, any suffixes used during cleaning will be retained in the cleaned ver-
sion of the data. This is preferable as it ensures that all taxonomic names are
rank-discrete and uniquely classified

• Routine specific arguments *
term_set A character vector of terms (to be used at all ranks) or a list of rank-specific

terms which will be supplied, element-wise as the @param collapse argument
called by @seealso clean_name. If a list, this

collapse_set A character vector of character strings (to be used at all ranks) or a list of rank-
specific strings which will be supplied, element-wise as the @param collapse
argument called by @seealso clean_name. If a list, this should be given in de-
scending rank order

jw Called by @seealso spell_check
str Called by @seealso spell_check
str2 Called by @seealso spell_check
alternative Called by @seealso spell_check
q Called by @seealso spell_check
pref_set A character vector of prefixes (which will be used at all ranks) or a list of rank-

specific prefixes, which will be supplied, element-wise as the @param pref ar-
gument called by @seealso spell_check. If a list, this should be given in de-
scending rank order.

suff_set A character vector of suffixes (which will be used at all ranks) or a list of rank-
specific suffixes, which will be supplied, element-wise as the @param suff argu-
ment called by @seealso spell_check. If a list, this should be given in descend-
ing rank order.

exclude_set A character vector of terms to exclude (which will be used at all ranks) or a list
of rank-specific exclusion terms, which will be supplied, element-wise as the
@param exclude argument called by @seealso spell_check. If a list, this should
be given in descending rank order.

jump Called by @seealso resolve_duplicates
plot Called by @seealso resolve_duplicates

Details

• Data supply arguments *

Value

A list with elements corresponding to the outputs of the chosen flagging routines (four by default:
$formatting, $synonyms, $ranks, $duplicates), plus a cleaned verison of the data ($data) if any of
clean_name, clean_spell or resolve_duplicates are TRUE. See @seealso format_check, @seealso
spell_clean,

10 chrono_scale

See Also

discrete_ranks and @seealso find_duplicates for details of the structure of the flagging outputs

Examples

load dataset
data("brachios")
subsample brachios to make for a short example runtime
set.seed(1)
brachios <- brachios[sample(1:nrow(brachios), 1000),]
define the taxonomic ranks used in the dataset (re-used elsewhere)
b_ranks <- c("phylum", "class", "order", "family", "genus")
define a list of suffixes to be used at each taxonomic level when scanning for synonyms
b_suff = list(NULL, NULL, NULL, NULL, c("ina", "ella", "etta"))
scan for errors
brachios <- check_taxonomy(brachios, suff_set = b_suff, ranks = b_ranks)

chrono_scale chrono_scale

Description

Convenience function to apply user-specified chronostratigraphy to fossil datasets. The function
relies on a lookup table generated based on the named intervals in the PBDB in early 2021. First
and last interval names in the supplied dataset are matched against this lookup table, by default
using ’get("GTS_2020)", to get GTS_2020 numeric ages. If the dataset contains intervals which
are not present in the lookup table, they will not be matched and the user will be warned. To get
around this possibility, the user can also supply the original numeric ages which will be used as
default ages if an interval cannot be matched, to ensure that the returned vectors of numeric ages do
not contain NAs.

Usage

chrono_scale(
x,
tscale = "GTS_2020",
srt = "early_interval",
end = "late_interval",
max_ma = NULL,
min_ma = NULL,
verbose = TRUE

)

Arguments

x A data.frame containing, minimally two columns corresponding respectively to
the first and last intervals of the data. Values should only be present in the second
column where the minimum age interval for a row is different to the maximum

clean_name 11

age interval. Otherwise the values should be NA and the ages returned will be
based on the interval specified in the first column, in line with PBDB formatting.

tscale A character string specifying one of the inbuilt chronostratigraphic timescales
(currently GTS 2020 only) or a data.frame supplied by the user. If the latter, this
must contain columns named ’Interval’, ’FAD’, ’LAD’, specifying the interval
names to be matched and their lower and upper age in Ma

srt A character of length 1 specifing the column name of the first interval field in x

end A character of length 1 specifing the column name of the last interval field in x

max_ma If not NULL, a character of length 1 specifing the column name of the original
numeric maximum age field in x, to be used as fall back values if interval names
cannot all be matched

min_ma If not NULL, a character of length 1 specifing the column name of the original
numeric minimum age field in x, to be used as fall back values if interval names
cannot all be matched

verbose A logical indicating if warning messages should be displayed or otherwise

Value

The dataframe, x, with two additional columns containing the revised first and last numeric ages of
the data, with column names GTS_FAD and GTS_LAD respectively

Examples

example dataset
data("brachios")
add GTS_2020 dates
brachios <- chrono_scale(brachios, srt = "early_interval", end = "late_interval",

max_ma = "max_ma", min_ma = "min_ma")

clean_name roxygen documentation

Description

clean_name

Usage

clean_name(x, terms = NULL, collapse = NULL, verbose = FALSE)

12 densify

Arguments

x a vector of names to clean. This will be coerced to class character internally

terms a character vector of terms to remove from elements of x. Terms are only re-
moved as whole words, rather than if they also happen to occur as strings within
elements of x

collapse a character vector of strings which should collapsed (i.e. replaced by "", rather
than the default " "). If one of the collapse terms is a special regex character, it
will need to be escaped, e.g. "\-"

verbose A logical of length 1 determining if function progress should be reported to the
console

Details

Function which bundles a series of cleaning routines into a single process. First any words in
brackets are removed, followed by a series of user-defined terms if given. Next Roman and Arabic
numerical are removed, then abbreviations up to five letters (abbreviations are matched by the fol-
lowing dot e.g ABFS.). By default, characters for removal are replaced by a white space to prevent
accidental collapse of strings. However, there may be specific cases where a collapse is required
and so terms given in collapse are dealt with next. After collapsing, rogue all rogue punctation is
removed, then isolated lowercase letters, then isolated groups of capitals up to 5 characters long.
Finally, white spaces greater than 1 are removed, along with trailing white space, any remaining
strings longer than 2 words subsetted to the first word, the first letter of each string capitalised and
zero length strings converted to NA

Value

a character vector the same length as x. Elements which were reduced to zero characters during
cleaning are returned as NA

Examples

load dataset
data("brachios")
clean genus names
gen_clean <- clean_name(brachios$genus)

densify densify

Description

Function to create a matrix of occurrence record densities through geological time from an occur-
rence dataset. Each column represents a taxon. Each row represents a user defined window of time,
with the first row starting at the oldest FAD in the dataset and spanning to the youngest LAD step-
wise by the user defined window (default of 1 Ma). Occurrence records are densified by generating
a vector of time points from occurrence FAD to occurrence LAD (default step of 0.1 Ma), then

densify 13

tallied in two ways. The first way is a simple histogram count of points-per-window, with the same
number of histogram bins as time steps between the overall taxon FAD and LAD. The second way
is a kernel density estimate, using a Gaussian kernel with a equally spaced estimatopms equal to the
number of timesteps between the overall taxon FAD and LAD

Usage

densify(
x,
rank = "genus",
srt = "max_ma",
end = "min_ma",
step = 1,
density = 0.1,
method = c("histogram", "kernel"),
...,
verbose = TRUE

)

Arguments

x An occurrence dataset

rank The column name in x containing the taxon names for which densified columns
will be generated

srt A column name in x denoting the occurrence FADs

end A column name in x denoting the occurrence LADs

step A positive integer specifying the time window size (i.e. the duration represented
by each row in the output matrix)

density A positive numeric specifying the step size for densifying records. This should
ideally be smaller than step

method The method for quantifying occurrence density. By default both histogram and
kernel density will be used

... additional arguments passed to @seealso density

verbose A logical determining if function progress should be reported

Value

A list of two sparse matrices, the first containing the histogram counts, the second the kernel density
estimates

Examples

load dataset
data("brachios")
subsample brachios to make for a short example runtime
set.seed(1)
brachios <- brachios[sample(1:nrow(brachios), 1000),]

14 discrete_ranks

densify ranges
dens <- densify(brachios)

discrete_ranks roxygen documentation

Description

discrete_ranks

Usage

discrete_ranks(x, ranks = NULL)

Arguments

x A dataframe containing hierarchically structured information, for example a ta-
ble of genus names and their higher taxonomic classifications

ranks If not NULL, a vector of column names of x, given in rank order. This is use-
ful if x contains columns which are not rank relevant or if columns are not in
hierarchical order. If not supplied, the column order in x is used directly and is
assumed to be in rank order

Details

Function for checking whether names in one column of a hierarchically organised dataframe re-
occur at other levels. Two checks are performed. The first checks for names in adjacent column,
assuming that accidental reuse of names at other levels are most likely to occur at an adjacent rank.
The second compares across all columns.

Value

A list of two lists. The first list contains names which reoccur at adjacent ranks. The second list
contains names that reoccur at any rank

Examples

load dataset
data("brachios")
define ranks
b_ranks <- c("phylum", "class", "order", "family", "genus")
run function
flag <- discrete_ranks(brachios, ranks = b_ranks)

find_duplicates 15

find_duplicates find_duplicates

Description

Function to detect and report elements with multiple higher assigments in a hierarchically structured
dataframe

Usage

find_duplicates(x, ranks = NULL)

Arguments

x A hierarchically organised dataframe

ranks The ranks in the dataframe in which to check for elements with multiple higher
classifications. The top rank is ignored by default

Value

A dataframe of elements with multiple higher classifications and their ranks

Examples

load dataset
data("brachios")
b_ranks <- c("phylum", "class", "order", "family", "genus")
run function
flag <- find_duplicates(brachios, ranks = b_ranks)

find_peaks find_peaks

Description

Function to scan, column-wise, a matrix of per-taxon observation density time series. This can be
applied to either the histogram or the kernel density output of densify, but the latter is recom-
mended. Peaks are detected as local maxima, then smoothed within a local window and tested to
distinguish if they are noise or significant. Strict threshold is that the peak is greater than the mean
+ sd of the window

Usage

find_peaks(x, win = 5, verbose = TRUE)

16 flag_ranges

Arguments

x A matrix as outputed by densify

win A positive integer specifying the window length on either side of a peak (i.e.
win 5 will give a total window of 11 - -5 indices + peak index + 5 indices)

verbose A logical determining if function progress should be reported

Value

A list of four, the first three positions containing lists of the peak indices for each taxon, under raw,
mean + sd and mean detection regimes. The fourth item is a dataframe of counts of peaks per taxon,
1 row per taxon, 1 column per detection regime

Examples

load dataset
data("brachios")
subsample brachios to make for a short example runtime
set.seed(1)
brachios <- brachios[sample(1:nrow(brachios), 1000),]
get density matrix
dens <- densify(brachios)
run function, using kernel density matrix
pk <- find_peaks(dens$kdensity)

flag_ranges flag_ranges

Description

Function to compare stratigraphic ranges in x to a set of reference ranges from y. A list of two
elements is returned. The first is a dataframe summarising the overall error status, specific error
counts FAD and LAD differences, and the 95% density distributions of the FAD and LAD errors
for each unique taxon in the column of x denoted by the first element of xcols. If a taxon in x is not
present in y, it is assigned the status 000 and its other entries in the returned dataframe will be NA.
The second element of the returned list is the error code for every individual element of the column
of x denoted by the first element of xcols - this will have the same number of rows as x. If x is a
range table rather than an occurrence dataset, then the two list elements will have the same number
of rows. Ranges for comparison may be supplied directly in y, or y may be another occurrence
dataset, in which case

Usage

flag_ranges(
x = NULL,
y = NULL,
xcols = c("genus", "max_ma", "min_ma"),
ycols = NULL,

flag_ranges 17

flag.diff = 5,
verbose = TRUE

)

Arguments

x Stratigraphic range data for taxa as a whole or for individual fossil occurrences
y The same as in x. This is the dataset to which ranges will be compared
xcols A character vector of length three specifying, in the following order, the taxo-

nomic name, stratigraphic base (FAD) and stratigraphic top (LAD) columns in
x.

ycols An optional character vector of length three for the same column types as in
xcols, but for dataset y. This is useful if the column names differ between the
datasets

flag.diff A vector of thresholds, given in millions of years which will be used to flag dis-
crepancies between occurrence FADs and LADs with respect to the reference
range. This is a convenience parameter so that occurrences with large discrep-
ancies can be quickly identified. Multiple thresholds can be supplied

verbose A logical of length one determining if the flagging progress should be reported
to the console

Value

A list of two data.frames, the first recording overall error statistics, the second recording error types
for each element of x. In the second data.frame, FAD or LAD differences in excess of the supplied
threshold(s) are marked with 1, otherwise 0

See Also

age_ranges is called internally to generate the range table for comparison.

Examples

load the example datasets
data(brachios)
data(sepkoski)
subsample brachios to make for a short example runtime
set.seed(1)
brachios <- brachios[sample(1:nrow(brachios), 1000),]
update brachios to GTS2020 to match Sepkoski
brachios <- chrono_scale(brachios, srt = "early_interval", end = "late_interval",

max_ma = "max_ma", min_ma = "min_ma", verbose = FALSE)
brachios$max_ma <- brachios$newFAD
brachios$min_ma <- brachios$newLAD
drop occurrences with older LADs than FADs
brachios <- brachios[brachios$max_ma > brachios$min_ma,]
trim the Sepkoski Compendium to the relevant entries
sepkoski <- sepkoski[which(sepkoski$PHYLUM == "Brachiopoda"),]
run flag ranges
flg <- flag_ranges(x = brachios, y = sepkoski, ycols = c("GENUS", "RANGE_BASE", "RANGE_TOP"))

18 format_check

format_check format_check

Description

Function to perform a series of basic formatting checks geared towards taxonomic name data. The
function very simply checks for non letter characters in the taxonomic names, that species-level
names contain two words, and genus-level and above names contain one word.

Usage

format_check(x, ranks, species = FALSE, species_sep = " ", verbose = TRUE)

Arguments

x A dataframe with hierarchically organised, taxonomic information. If x only
comprises the taxonomic information,

ranks does not need to be specified, but the columns must be in order of decreasing
taxonomic rank @param ranks The column names of the taxonomic data fields
in x. These must be provided in order of decreasing taxonomic rank

species A logical indicating if x contains a species column. As the data must be supplied
in hierarchical order, this column will naturally be the last column in x and
species-specific spell checks will be performed on this column.

species_sep A character vector of length one specifying the genus name and specific epithet
in the species column, if present

verbose A logical determining if any flagged errors should be reported to the console

Value

A list of two lists. The first list flags the row indexes of columns whose elements contains non-letter
characters. The second list flags the row indexes of columns whose elements do not contain the
correct numbers of words

Examples

load dataset
data("brachios")
define ranks
b_ranks <- c("phylum", "class", "order", "family", "genus")
run function
flag <- format_check(brachios, ranks = b_ranks)

geog_lookup 19

geog_lookup geog_lookup

Description

lookup table called by ’get_pbdb’

Usage

geog_lookup

Format

An object of class data.frame with 511 rows and 2 columns.

get_pbdb get_pbdb

Description

Function for downloading Paleobiology Database (PBDB) data (saved to disk and/or imported into
R) or generating PBDB API-compatible URLs. If downloading data over timespans greater than
100 Ma, the download is performed in 100 Ma chunks to better track the download progress.

Usage

get_pbdb(
taxon = NULL,
interval = NULL,
mode = "occurrence",
res = "all",
fields = c("ident", "coords", "class"),
ex_taxon = NULL,
area = NULL,
ex_area = NULL,
invert_area = FALSE,
litho = NULL,
invert_litho = FALSE,
env = NULL,
ex_env = NULL,
invert_env = NULL,
pres = NULL,
idqual = NULL,
return_url = FALSE,
return_data = TRUE,

20 get_pbdb

save_as = NULL,
tscale = "ICS2013",
wait = Inf

)

Arguments

taxon A character vector of taxon names. Prepending a taxon name with ^ will exclude
it from the PBDB search. Alternatively @param ex_taxon can be used to do this

interval A numeric vector of length two with positive ages in Ma, or a character vector
containing one or two ICS chronostratigraphic interval names

mode A character vector of length one specifying the type of data to return: one of
occurrence, collection, taxa, specimen, measurement, strata, diversity, opinion
or reference

res A character vector of length one specifying the taxonomic resolution of the
dataset: one of all, family, genus species, lump_genus or lump_subgen. The
latter two lump multiple occurrences of genera or subgenera within collections
into a single representative occurrence

fields A character vector of PBDB vocabulary for additional data fields to download:
see https://paleobiodb.org/data1.2/occs/list_doc.html

ex_taxon A character vector of taxon names to exclude from the PBDB search

area If not NULL, then a numeric vector of length four specifying, in order, the min
lng, max lng, min lat and max lat of the area from which occurrences will be
returned, in decimal degrees (equator = 0 lat, prime meridian = 0 lng). Alter-
natively, a character vector of regions from which occurrences will be returned:
any valid country name or ISO2 code. Continent names and codes are also sup-
ported as follows: ATA Antarctica, AFR Africa, ASI Asia, AUS Australia, EUR
Europe, IOC Indian Ocean, NOA North America, OCE Oceania,SOA South
America

ex_area If not NULL, then a character vector of valid country names or ISO2 codes, as in
@param area (), from which occurrences will be excluded from a PBDB search

invert_area If TRUE, then regions specified in area will be excluded from a PBDB search,
except for the regions specified in ex_area

litho If not NULL, a character vector of PBDB vocabulary corresponding to which
lithologies a PBDB search should return

invert_litho If TRUE, a character vector of PBDB vocabulary corresponding to which litholo-
gies a PBDB search should exclude

env If not NULL, a character vector of PBDB vocabulary corresponding to which
environments a PBDB search should return

ex_env If not NULL, a character vector of PBDB vocabulary corresponding to which
environments a PBDB search should exclude

invert_env If TRUE, then environments specified in env will be excluded from a PBDB
search, except for the environments specified in ex_env

pres A character vector of length one specifying the preservation mode of the occur-
rences to return: one of regular, form, ichno, or ’form,ichno’

GTS_2020 21

idqual A character vector of length one specifying the taxonomic certainty of the oc-
currences to return: one of certain, genus_certain, uncertain, new"

return_url If TRUE, the function will return a correctly formatted url suitable for use with
curl or similar API functions, comprising the search parameters set by the user

return_data If TRUE (default), the downloaded csv will automatically be read into R (this
must be assigned to an object)

save_as If not NULL, the file name to which the downloaded data will be saved on the
disk as a .csv

tscale A character vector of length one determining what chronostratigraphic timescale
will be applied to the data. "ICS2013" will retain the PBDB ICS 2013 standard.
"GTS2020" will update all early and late interval ages to the GTS2020 standard,
using a lookup table supplied with the function. Alternatively, the pathway to
a custom .csv file with columns Interval, FAD and LAD where Interval are the
names of the early and late intervals in the PBDB, and FAD and LAD are the
numeric lower and upper boundaries of those intervals

wait The maximum wait time for the download in milliseconds, as used by curl. This
is set to no wait time by default

Value

either a PBDB API compatible URL or a PBDB dataset

Examples

download Triassic dinosaurs (wait time set to meet CRAN example requirement)
tdinos <- fossilbrush:::get_pbdb(taxon = "Dinosauria", interval = "Triassic", wait = 499)

GTS_2020 GTS_2020

Description

lookup table called by ’get_pbdb’

Usage

GTS_2020

Format

An object of class data.frame with 1534 rows and 9 columns.

22 intersect_ranges

GTS_2020_changelog GTS_2020_changelog

Description

changelog of periodic updates made to the GTS2020 table originally published in this package. The
purpose of this changelog is to allow the user to assess how up-to-date the resource is and made any
changes themselves if needed. A data.frame with date-wise rows of edits

Usage

GTS_2020_changelog

Format

An object of class data.frame with 1 rows and 2 columns.

intersect_ranges intersect_ranges

Description

Function to find the maximum intersection between a set of numeric ranges, in this case first and
last appearence datums on taxonomic ranges.

Usage

intersect_ranges(x, srt = NULL, end = NULL, verbose = TRUE)

Arguments

x A numeric data.frame or matrix of ranges. If just two columns are supplied, the
first column is assumed to be the srt column

srt If x contains more than two columns, srt is the name of the range base column -
the FAD

end If x contains more than two columns, end is the name of the range top column -
the LAD

verbose A logical indicating whether the function should report progress to the console

Value

A matrix with three columns, indicating the intersection (FAD and LAD) and the number of ranges
that intersection encompasses

pacmacro_ranges 23

Examples

plot an example
df <- cbind(c(1.5, 3, 2.1, 1), c(6, 5, 3.7, 10.1))
plot(1:11, ylim = c(0, 5), col = NA)
segments(x0 = c(1.5, 3, 2.1, 1), y0 = 1:4, x1 = c(6, 5, 3.7, 10.1), y1 = 1:4)
abline(v = 3, col = "red", lty = 2)
abline(v = 3.7, col = "red", lty = 2)
intersect function
intersect_ranges(df)

pacmacro_ranges pacmacro_ranges

Description

Function to apply a modification of Pacman trimming to macrofossil data. The function generates
a densified occurrence record using the same methods as densify then trim the upper and lower
ranges by a user-defined percentage. The full and trimmed ranges are then compared against each
other to test if the FAD and the LAD for a taxon form a long tail in its distribution. Multiple tail
thresholds can be supplied, but all test to see if the sum of the FAD and LAD which exceeds the
trimmed range constitute the threshold proportion of the total range for than taxon, e.g. does the
FAD and the LAD outside of the trimmed range comprise a quarter (tail.flag = 0.25) of the
taxon range?

Usage

pacmacro_ranges(
x,
rank = "genus",
srt = "max_ma",
end = "min_ma",
step = 1,
density = 0.1,
top = 5,
bottom = 5,
tail.flag = 0.35,
method = c("histogram", "kernel")

)

Arguments

x A stratigraphic occurrence dataset

rank The column name in x containing the taxon names for which trimmed ranges
will be calculated

srt A column name in x denoting the occurrence FADs

end A column name in x denoting the occurrence LADs

24 pbdb_fields

step A positive integer specifying the time window size (i.e. the duration represented
by each row in the output matrix)

density A positive numeric specifying the step size for densifying records. This should
ideally be smaller than step

top The percentage by which the top of the range will be trimmed

bottom The percentage by which the bottom of the range will be trimmed

tail.flag a numeric vector of proportions in the range 0 > x > 1 which will be used to test
for long tails

method The method for quantifying occurrence density. By default both histogram and
kernel density will be used

Value

If the user specifies a specific method (e.g. method = "kernel"), the returned value will be a
data.frame containing the taxa as row names, the original taxon ranges (FAD, LAD), their ranges as
trimmed by the specified value (default FAD95, LAD95), and the tail status (0 = none, 1 = tail) at the
user-specified tail proportions. If method is not specified, the result will be a list of 2 data.frames,
one for each method

Source

Pacman procedure modified from https://rdrr.io/github/plannapus/CONOP9companion/src/R/pacman.R.

References

Lazarus et al (2012) Paleobiology

Examples

load dataset
data("brachios")
subsample brachios to make for a short example runtime
set.seed(1)
brachios <- brachios[sample(1:nrow(brachios), 1000),]
run pacmacro
pacm <- pacmacro_ranges(brachios, tail.flag = c(0.3, 0.35, 0.4),

rank = "genus", srt = "max_ma", end = "min_ma")

pbdb_fields geog_lookup

Description

lookup table called by ’get_pbdb’

Usage

pbdb_fields

pbdb_kingdoms 25

Format

An object of class list of length 31.

pbdb_kingdoms pbdb_kingdoms

Description

lookup table called by ’get_pbdb’

Usage

pbdb_kingdoms

Format

An object of class list of length 3.

plot_dprofile plot_dprofile

Description

Function to plot density profiles of occurrences through time using the output of @seealso densify.

Usage

plot_dprofile(x, taxon, exit = TRUE)

Arguments

x The list output of @seealso densify

taxon A character vector of length one, specifying one of the taxon names in x to be
plotted

exit Restore base plotting parameters on function exit (default as a requirement for
CRAN). Can be set to false to allow other elements to be aded to a plot

Value

NULL, the plotted density profile

26 plot_taxa

Examples

load dataset
data("brachios")
subsample brachios to make for a short example runtime
set.seed(1)
brachios <- brachios[sample(1:nrow(brachios), 1000),]
densify ranges
dens <- densify(brachios)
plot_dprofile(dens, "Atrypa")

plot_taxa plot_taxa

Description

Function to plot the parent or child relationships of an element in a hierarchically organised dataframe.
Multiple taxa can be plotted simultaneously

Usage

plot_taxa(
x,
taxon,
trank,
ranks,
mode = c("parent", "child", "all"),
step = NULL

)

Arguments

x a dataframe containing hierarchically organised data in columns

taxon A character vector of element names whose relationships will be plotted (these
must be of the same rank)

trank A character vector of length one corresponding to the column name in x in which
taxa is located

ranks A character vector corresponding to the column names in x, given in hierarchical
order

mode The direction of the relationships to be plotted

step A positive integer specifinyg the neighbourhood of the relationships to plot.
Specifying a number greater than the number of ranks will not cause a failure,
and will instead plot all relationships in the direction specified in mode

Value

A plot of the relationships of the specified elements

quantile_coef_density_BMS 27

Examples

load dataset
data("brachios")
define ranks in dataset
b_ranks <- c("phylum", "class", "order", "family", "genus")
plot taxon
plot_taxa(brachios, "Atrypa", trank = "genus", ranks = b_ranks, mode = "parent")

quantile_coef_density_BMS

quantile_coef_density_BMS

Description

Static rip of the quantile.coef.density function and relevant internals from the BMS package as the
package is archived.

Usage

quantile_coef_density_BMS(
x,
probs = seq(0.25, 0.75, 0.25),
names = TRUE,
normalize = TRUE,
...

)

Arguments

x a object of class pred.density, coef.density, density, or a list of densities
probs numeric vector of probabilities with values in range 0 - 1. Elements very close

to the boundaries return Inf or -Inf
names logical; if TRUE, the result has a names attribute, resp. a rownames and col-

names attributes. Set to FALSE for speedup with many probs
normalize logical if TRUE then the values in x$y are multiplied with a factor such that

their integral is equal to one
... further arguments passed to or from other methods.

Value

If x is of class density (or a list with exactly one element), a vector with quantiles. If x is a list of
densities with more than one element (e.g. as resulting from pred.density or coef.density), then the
output is a matrix of quantiles, with each matrix row corresponding to the respective density.

Source

static rip from BMS package

28 resolve_duplicates

resolve_duplicates resolve_duplicates

Description

Function for identifying and resolving alternative higher assignments in a hierarchically structured
dataframe. Columns are checked from the lowest to the highest rank for elements with multiple
higher assignments. These assignments are then assessed topologically to determine if they repre-
sent inadvertent use of the same name at a given rank for genuinely different entities, or whether
the higher classifications are conflicting. In the case of the former, unique character suffixes are
applied to each differently classified case (up to 26 currently supported), effectively splitting up the
alternatively classified element. In the case of the latter, the alternative classifications are assessed
and are either combined, or the more frequently used or the more complete classification scheme is
taken (the more frequent pathway can also be the most complete).

Usage

resolve_duplicates(x, ranks = NULL, jump = 4, plot = FALSE, verbose = TRUE)

Arguments

x A dataframe containing hierarchically structured information, for example a ta-
ble of genus names and their higher taxonomic classifications

ranks If not NULL, a vector of column names of x, given in rank order. This is use-
ful if x contains columns which are not rank relevant or if columns are not in
hierarchical order. If not supplied, the column order in x is used directly and is
assumed to be in rank order

jump The maximum number of levels between the point of divergence and the point
of reunion (if present) for a given path, below which the divergence will be taken
as conflicting

plot A logical speciying if the divergent paths should be plotted
verbose A logical of length one which determines if the function should report the de-

tection and resolution of elements with multiple higher classifications (if any)

Value

The dataframe x, with any alternative higher classifications resolved, giving the classification a strict
tree structure

Examples

load dataset
data("brachios")
define ranks
b_ranks <- c("phylum", "class", "order", "family", "genus")
run function
res <- resolve_duplicates(brachios, ranks = b_ranks)

revise_ranges 29

revise_ranges revise_ranges

Description

Function to generate a consensus age for assemblages of fossil data in x, given a table of taxonomic
ranges. The need for error-checking is informed by the error codes for the individual fossil occur-
rences within each collection - if there is no error, then the consensus age is unchanged. If errors are
present, then a consensus age for a threshold proportion of taxa is searched for using the overlap of
the ranges for those taxa, as given in range table y. Taxa whose occurrences lie outside this consen-
sus age are flagged as potential taxonomic errors. If the threshold consensus partially overlaps with
the assemblage age, this overlap is returned to present overzealous alteration of the age - otherwise
the complete consensus age is returned. If a consensus age cannot be found, the original assemblage
age is returned, and each occurrence in the collection flagged as potential taxonomic errors.

Usage

revise_ranges(
x,
y,
assemblage = "collection_no",
srt = "max_ma",
end = "min_ma",
taxon = "genus",
err = NULL,
do.flag = FALSE,
prop = 0.75,
allow.zero = TRUE,
verbose = TRUE

)

Arguments

x Fossil occurrence data grouped into spatiotemporally distinct assemblages

y A stratigraphic range dataset from which consensus assemblage ages will be
derived

assemblage The column name of the assemblage groups in x

srt The column name of stratigraphic bases for each element in both x and y - i.e. x
and y must have this same name for that column

end The column name of stratigraphic tops for each element in both x and y - i.e. x
and y must have this same name for that column

taxon The column name denoting the taxon names in both x and y - i.e. x and y must
have this same name for that column

30 revise_ranges

err The column name flagging age errors for occurrences in x. This allows 100$
valid assemblages to be skipped. Age errors can be derived using @seealso
flag_ranges. All error codes must be one of: "000" - unchecked, "R1R" - valid,
"0R0" - both FAD and LAD exceeded, "00R" - totally older than range, "R00" -
totally younger than range, "01R" - FAD exceeded, "1R0" - LAD exceeded. If
not supplied, all assemblages will be checked, even if they are already valid a
priori.

do.flag Rather than supplying error codes, should flag_ranges be called internally to
generate error codes for supply to the rest of revise_ranges? As with err, this
is useful to prefilter individual occurrences, allowing assemblages contain all
valid, all unchecked or a mixture of such error codes to be skipped. This can
massively speed up processing time for large datasets.

prop A numeric, between 0 and 1, denoting the threshold percentage of taxa in the
assemblage for which a consensus age must be found

allow.zero A logical determining if, in the case of a collection LAD being equal to the
consensus age FAD (i.e. a pointwise overlap), that pointwise age will be taken
as the revised age. The resultant collection age will have no uncertainty as a
result, which may be unrealistic. The default behaviour is FALSE, in which
case pointwise overlaps will be ignored and the revised age taken instead

verbose A logical determining if the progress of the redating procedure should be re-
ported

Value

A list of two dataframes, the first recording the results of the consensus redating procedure for each
assemblage in x, the second recording any flags (if any) for each occurrence in x

Examples

load datasets
data("brachios")
data("sepkoski")
subsample brachios to make for a short example runtime
set.seed(1)
brachios <- brachios[sample(1:nrow(brachios), 1000),]
rename columns in Sepkoski to match brachios
colnames(sepkoski)[4:6] <- c("genus", "max_ma", "min_ma")
flag and resolve against the Sepkoski Compendium, collection-wise
revrng <- revise_ranges(x = brachios, y = sepkoski, do.flag = TRUE, verbose = TRUE,

taxon = "genus", assemblage = "collection_no",
srt = "max_ma", end = "min_ma")

append the revised occurrence ages and error codes to the dataset
brachios$newfad <- revrng$occurrence$FAD
brachios$newlad <- revrng$occurrence$LAD
brachios$errcode <- revrng$occurence$status

sepkoski 31

sepkoski sepkoski

Description

An example dataset. A port of the Sepkoski Compendium from the chronosphere package, with a
few corrections and GTS2020 dating applied

Usage

sepkoski

Format

An object of class data.frame with 35700 rows and 6 columns.

sep_code sep_code

Description

Lookup table of chronostratigraphic stage abbreviations used in the Sepkoski Compendium, with
interval boundaries updated to the GTS2020 standard

Usage

data(sep_code)

Format

An object of class data.frame with 306 rows and 8 columns.

Source

chronosphere (fetch), Sepkoski 2002

32 spell_check

spell_check spell_check

Description

Function for checking for potential synonyms with alternate spellings. Synonyms are checked for
within group using using a Jaro Winkler string distance matrix. Potential synonyms are selected
using the jw threshold. These can then be further filtered by the number of shared letters at the
beginning and end of the a synonym pair, and by prefixes or suffixes which may give erroneously
high similarities.

Usage

spell_check(
x,
terms = NULL,
groups = NULL,
jw = 0.1,
str = 1,
str2 = NULL,
alternative = "jaccard",
q = 1,
pref = NULL,
suff = NULL,
exclude = NULL,
verbose = TRUE

)

Arguments

x a dataframe containing a column with terms, and a further column denoting the
groups within which terms will be checked against one another. If supplying a
dataframe with just these columns, terms should be column 1

terms a character vector of length 1, specifying the terms column in x. This is required
if x contains more than two columns. Alternatively, if x is not provided, terms
can be a character vector. If groups are not specified, all elements of terms will
be treated as part of the same group

groups a character vector of length 1, specifying the groups column in x. This is re-
quired if x contains more than two columns. Alternatively, if terms is supplied
as a character vector, groups can also be supplied in the same way to denote
their groups

jw a numeric greater than 0 and less than 1. This is the distance threshold below
which potential synonyms will be considered

str A positive integer specifying the number of matching characters at the beginning
of synonym pairs. By default 1, i.e. the first letters must match

tgraph 33

str2 If not NULL, a positive integer specifying the number of matching characters at
the end of synonym pairs

alternative A character string of length one corresponding to one of the methods used by
@seealso afind. One of "osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine",
"running_cosine", "jaccard", or "soundex".

q q-gram size. Only used when alternative is "qgram", "cosine" or "Jaccard".

pref If not NULL, a character vector of prefixes which may result in erroneously low
JW distances. Synonyms will only be considered if both terms share the same
prefix

suff If not NULL, a character vector of suffices which may result in erroneously low
JW distances. Synonyms will only be considered if both terms share the same
suffix

exclude If not NULL, a character vector of group names which should be skipped -
useful for groups which are known to contain potentially similar terms

verbose A logical determining if function progress be reported using the pbapply progress
bar

Value

a dataframe of synonyms (cols 1 and 2), the group in which they occur, the frequencies of each
synonym in the dataset and finally the q-gram difference between the synonyms

Examples

load dataset
data("brachios")
define suffixes
b_suff <- c("ina", "ella", "etta")
run function
spl <- spell_check(brachios, terms = "genus", groups = "family", suff = b_suff)

tgraph tgraph

Description

Function to create a tgraph representation of a hierarchically organised dataframe. This is the focal
object of the t* functions - the complete set of hierarchical relationships between a set of elements

Usage

tgraph(x, ranks = NULL, verbose = TRUE)

34 threshold_peaks

Arguments

x A dataframe containing a set of hierarchical relationships. The leftmost column
contains the elements which will form the highest rank, followed rightwards by
successive ranks

ranks If not NULL, a vector of column names of x, given in rank order. This is use-
ful if x contains columns which are not rank relevant or if columns are not in
hierarchical order. If not supplied, the column order in x is used directly and is
assumed to be in rank order

verbose A logical indicating whether the progress of tgraph construction should be re-
ported to the console

Value

a tgraph object

threshold_peaks threshold_peaks

Description

Function to detect if two peaks in a density spectrum can be considered separate based on a user
supplied threshold. Creates a sequence of divisions from the troughs immediately preceding any
significant peaks, then bins occurrences for a given taxon name by those divisions.

Usage

threshold_peaks(
x,
y,
ycols = c("genus", "max_ma", "min_ma"),
thresh = 15,
verbose = TRUE

)

Arguments

x A list of significant peaks as returned by find_peaks

y An occurrence dataset with taxon names corresponding to the list names of x

ycols A character vector denoting, in order, the taxon, FAD and LAD columns in y

thresh The threshold distance between peaks above which they will be considered dis-
tinct - given in Ma

verbose A logical determining if function progress should be reported

threshold_ranges 35

threshold_ranges threshold_ranges

Description

Function to detect if two peaks in a density spectrum can be considered separate based on a user
supplied threshold. Creates a sequence of divisions from the troughs immediately preceding any
significant peaks, then bins occurrences for a given taxon name by those divisions.

Usage

threshold_ranges(
x,
rank = "genus",
srt = "max_ma",
end = "min_ma",
method = "kernel",
step = 1,
density = 0.1,
use_sd = TRUE,
win = 5,
thresh = 5,
...,
report = TRUE,
verbose = TRUE

)

Arguments

x An occurrence dataset containing taxon names, maximum ages and minimum
ages

rank The column name in x containing the taxon names

srt A column name in x denoting the occurrence maximum ages

end A column name in x denoting the occurrence minumum ages

method The method for quantifying occurrence density: one histogram or kernel. Kernel
is the recommended default. As called be @seealso densify

step A positive integer specifying the time window size for density calculation. As
called by @seealso densify

density A positive numeric specifying the step size for densifying records. This should
ideally be smaller than step. As called by @seealso densify

use_sd A logical determining whether to use peaks detected as significant using the
mean + standard deviation of its neighbourhood. If FALSE, then the peaks need
only be greater than the neighbourhood mean to be significant. Thus, use_sd is
more conservative, but less prone to noise. As called by @seealso find_peaks

36 update_graph

win A positive integer specifying the neighborhood window length on either side of
a peak durign significance testing (i.e. win 5 will give a total window of 11: -5
indices + peak index + 5 indices). As called by @seealso find_peaks

thresh The threshold distance between peaks above which they will be considered dis-
tinct - given in Ma

... additional arguments passed to @seealso density

report A logical determining if the analytical outputs of the function be returned to the
user, as well as the revised taxon names, TRUE by default

verbose A logical determining if function progress should be reported

Value

If report = TRUE (the default), a list of five elements. $data gives the thresholded (and potentially
subdivided) taxon names. $matrix is the taxon-wise matrix of occurrence densities. $peaks is a list
containing three lists of peaks (all peaks, significant by mean + sd, significant by sd only) for each
taxon and a dataframe of peak counts between the three treatments. $comparison

Examples

load dataset
data("brachios")
subsample brachios to make for a short example runtime
set.seed(1)
brachios <- brachios[sample(1:nrow(brachios), 1000),]
interpeak thresholding
itp <- threshold_ranges(brachios, win = 8, thresh = 10,

rank = "genus", srt = "max_ma", end = "min_ma")

update_graph update_graph

Description

Function to update the structure of a graph, given a set of modification as returned by assess_duplicates

Usage

update_graph(x, del = NULL, add = NULL, changes = NULL)

Arguments

x a tgraph object to modify

del A vector of element names or numbers to delete

add An edge sequence of edges to add to the graph

changes Alternatively, the output of assess_duplicates, containing proposed deletions and
additions

update_graph 37

Value

An updated tgraph object

Index

∗ datasets
brachios, 6
geog_lookup, 19
GTS_2020, 21
GTS_2020_changelog, 22
pbdb_fields, 24
pbdb_kingdoms, 25
sep_code, 31
sepkoski, 31

add_itp, 2
add_kingdoms, 3
age_ranges, 4
assess_duplicates, 5

brachios, 6

check_taxonomy, 7
chrono_scale, 10
clean_name, 11

densify, 12
discrete_ranks, 14

find_duplicates, 15
find_peaks, 15
flag_ranges, 16
format_check, 18

geog_lookup, 19
get_pbdb, 19
GTS_2020, 21
GTS_2020_changelog, 22

intersect_ranges, 22

pacmacro_ranges, 23
pbdb_fields, 24
pbdb_kingdoms, 25
plot_dprofile, 25
plot_taxa, 26

quantile_coef_density_BMS, 27

resolve_duplicates, 28
revise_ranges, 29

sep_code, 31
sepkoski, 31
spell_check, 32

tgraph, 33
threshold_peaks, 34
threshold_ranges, 35

update_graph, 36

38

	add_itp
	add_kingdoms
	age_ranges
	assess_duplicates
	brachios
	check_taxonomy
	chrono_scale
	clean_name
	densify
	discrete_ranks
	find_duplicates
	find_peaks
	flag_ranges
	format_check
	geog_lookup
	get_pbdb
	GTS_2020
	GTS_2020_changelog
	intersect_ranges
	pacmacro_ranges
	pbdb_fields
	pbdb_kingdoms
	plot_dprofile
	plot_taxa
	quantile_coef_density_BMS
	resolve_duplicates
	revise_ranges
	sepkoski
	sep_code
	spell_check
	tgraph
	threshold_peaks
	threshold_ranges
	update_graph
	Index

